We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The ferric uptake regulator of Helicobacter pylori: a critical player in the battle for iron and colonization of the stomach

    Oscar Q Pich

    Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA

    &
    D Scott Merrell

    * Author for correspondence

    Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA. .

    Published Online:https://doi.org/10.2217/fmb.13.43

    Helicobacter pylori is arguably one of the most successful pathogens; it colonizes the stomachs of more than half of the human population. Colonization and persistence in such an inhospitable niche requires the presence of exquisite adaptive mechanisms. One of the proteins that contributes significantly to the remarkable adaptability of H. pylori is the ferric uptake regulator (Fur), which functions as a master regulator of gene expression. In addition to genes directly related to iron homeostasis, Fur controls expression of several enzymes that play a central role in metabolism and energy production. The absence of Fur leads to severe H. pylori colonization defects and, accordingly, several Fur-regulated genes have been shown to be essential for colonization. Moreover, proteins encoded by Fur-regulated genes have a strong impact on redox homeostasis in the stomach and are major determinants of inflammation. In this review, we discuss the main roles of Fur in the biology of H. pylori and highlight the importance of this regulatory protein in the infectious process.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Blaser MJ, Perez-Perez GI, Kleanthous H et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res.55(10),2111–2115 (1995).
    • Gwack J, Shin A, Kim CS et al. CagA-producing Helicobacter pylori and increased risk of gastric cancer: a nested case–control study in Korea. Br. J. Cancer95(5),639–641 (2006).
    • Alkout AM, Blackwell CC, Weir DM. Increased inflammatory responses of persons of blood group O to Helicobacter pylori. J. Infect. Dis.181(4),1364–1369 (2000).
    • Malfertheiner P, Sipponen P, Naumann M et al.Helicobacter pylori eradication has the potential to prevent gastric cancer: a state-of-the-art critique. Am. J. Gastroenterol.100(9),2100–2115 (2005).
    • Blanchard TG, Eisenberg JC, Matsumoto Y. Clearance of Helicobacter pylori infection through immunization: the site of T cell activation contributes to vaccine efficacy. Vaccine22(7),888–897 (2004).
    • Malfertheiner P, Megraud F, O’Morain C et al. Current concepts in the management of Helicobacter pylori infection – the Maastricht 2–2000 Consensus Report. Aliment. Pharmacol. Ther.16(2),167–180 (2002).
    • Ruggiero P, Peppoloni S, Rappuoli R, Del Giudice G. The quest for a vaccine against Helicobacter pylori: how to move from mouse to man? Microbes Infect.5(8),749–756 (2003).
    • Baltrus DA, Amieva MR, Covacci A et al. The complete genome sequence of Helicobacter pylori strain G27. J. Bacteriol.191(1),447–448 (2009).
    • Tomb JF, White O, Kerlavage AR et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388(6642),539–547 (1997).
    • 10  Carpenter BM, Whitmire JM, Merrell DS. This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect. Immun.77(7),2590–2601 (2009).
    • 11  Van Vliet AH, Stoof J, Vlasblom R et al. The role of the ferric uptake regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter7(4),237–244 (2002).
    • 12  Bijlsma JJ, Waidner B, Vliet AH et al. The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance. Infect. Immun.70(2),606–611 (2002).
    • 13  Gancz H, Censini S, Merrell DS. Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect. Immun.74(1),602–614 (2006).▪▪ Describes the identification of genes regulated by iron and pH in a ferric uptake regulator (Fur)-dependent manner.
    • 14  Van Vliet AH, Kuipers EJ, Stoof J, Poppelaars SW, Kusters JG. Acid-responsive gene induction of ammonia-producing enzymes in Helicobacter pylori is mediated via a metal-responsive repressor cascade. Infect. Immun.72(2),766–773 (2004).
    • 15  Van Vliet AH, Stoof J, Poppelaars SW et al. Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor. J. Biol. Chem.278(11),9052–9057 (2003).
    • 16  Delany I, Spohn G, Rappuoli R, Scarlato V. The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol. Microbiol.42(5),1297–1309 (2001).
    • 17  Ernst FD, Homuth G, Stoof J et al. Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J. Bacteriol.187(11),3687–3692 (2005).
    • 18  Gancz H, Merrell DS. The Helicobacter pylori ferric uptake regulator (Fur) is essential for growth under sodium chloride stress. J. Microbiol.49(2),294–298 (2011).
    • 19  Miles S, Piazuelo MB, Semino-Mora C et al. Detailed in vivo analysis of the role of Helicobacter pylori Fur in colonization and disease. Infect. Immun.78(7),3073–3082 (2010).▪ Provides the most comprehensive study on the role of Fur in the colonization of the stomach.
    • 20  Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect. Immun.69(6),3744–3754 (2001).
    • 21  Palyada K, Threadgill D, Stintzi A. Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol.186(14),4714–4729 (2004).
    • 22  Rea RB, Gahan CG, Hill C. Disruption of putative regulatory loci in Listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence. Infect. Immun.72(2),717–727 (2004).
    • 23  Jacobsen I, Gerstenberger J, Gruber AD et al. Deletion of the ferric uptake regulator Fur impairs the in vitro growth and virulence of Actinobacillus pleuropneumoniae. Infect. Immun.73(6),3740–3744 (2005).
    • 24  Harvie DR, Vilchez S, Steggles JR, Ellar DJ. Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology151(Pt 2),569–577 (2005).
    • 25  Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM. Iron and Fur regulation in Vibrio cholerae and the role of Fur in virulence. Infect. Immun.73(12),8167–8178 (2005).
    • 26  Keenan JI, Peterson RA, Fraser R et al. The effect of Helicobacter pylori infection and dietary iron deficiency on host iron homeostasis: a study in mice. Helicobacter9(6),643–650 (2004).
    • 27  Velayudhan J, Hughes NJ, Mccolm AA et al. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol. Microbiol.37(2),274–286 (2000).
    • 28  Braun V, Braun M. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol.5(2),194–201 (2002).
    • 29  Ferguson AD, Deisenhofer J. Metal import through microbial membranes. Cell116(1),15–24 (2004).
    • 30  Senkovich O, Ceaser S, Mcgee DJ, Testerman TL. Unique host iron utilization mechanisms of Helicobacter pylori revealed with iron-deficient chemically defined media. Infect. Immun.78(5),1841–1849 (2010).▪ Analyzes the iron binding proteins from the host that Helicobacter pylori can use as an iron source.
    • 31  Husson MO, Legrand D, Spik G, Leclerc H. Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect. Immun.61(6),2694–2697 (1993).
    • 32  Worst DJ, Otto BR, De Graaff J. Iron-repressible outer membrane proteins of Helicobacter pylori involved in heme uptake. Infect. Immun.63(10),4161–4165 (1995).
    • 33  Dhaenens L, Szczebara F, Husson MO. Identification, characterization, and immunogenicity of the lactoferrin-binding protein from Helicobacter pylori. Infect. Immun.65(2),514–518 (1997).
    • 34  Carrizo-Chavez MA, Cruz-Castaneda A, Olivares-Trejo Jde J. The frpB1 gene of Helicobacter pylori is regulated by iron and encodes a membrane protein capable of binding haem and haemoglobin. FEBS Lett.586(6),875–879 (2012).
    • 35  Gonzalez-Lopez MA, Olivares-Trejo JJ. The gene frpB2 of Helicobacter pylori encodes an hemoglobin-binding protein involved in iron acquisition. Biometals22(6),889–894 (2009).
    • 36  Cardenas VM, Mulla ZD, Ortiz M, Graham DY. Iron deficiency and Helicobacter pylori infection in the United States. Am. J. Epidemiol.163(2),127–134 (2006).
    • 37  Qu XH, Huang XL, Xiong P et al. Does Helicobacter pylori infection play a role in iron deficiency anemia? A meta-analysis. World J. Gastroenterol.16(7),886–896 (2010).
    • 38  Annibale B, Capurso G, Delle Fave G. The stomach and iron deficiency anaemia: a forgotten link. Dig. Liver Dis.35(4),288–295 (2003).
    • 39  Barabino A. Helicobacter pylori-related iron deficiency anemia: a review. Helicobacter7(2),71–75 (2002).
    • 40  Konno M, Muraoka S, Takahashi M, Imai T. Iron-deficiency anemia associated with Helicobacter pylori gastritis. J. Pediatr. Gastroenterol. Nutr.31(1),52–56 (2000).
    • 41  Digirolamo AM, Perry GS, Gold BD et al.Helicobacter pylori, anemia, and iron deficiency: relationships explored among Alaska native children. Pediatr. Infect. Dis. J.26(10),927–934 (2007).
    • 42  Thomson MJ, Pritchard DM, Boxall SA et al. Gastric Helicobacter infection induces iron deficiency in the INS-GAS mouse. PLoS ONE7(11),e50194 (2012).
    • 43  Huang X, Qu X, Yan W et al. Iron deficiency anaemia can be improved after eradication of Helicobacter pylori. Postgrad. Med. J.86(1015),272–278 (2010).
    • 44  Yokota S, Konno M, Mino E, Sato K, Takahashi M, Fujii N. Enhanced Fe ion-uptake activity in Helicobacter pylori strains isolated from patients with iron-deficiency anemia. Clin. Infect. Dis.46(4),e31–e33 (2008).
    • 45  Choe YH, Hwang TS, Kim HJ, Shin SH, Song SU, Choi MS. A possible relation of the Helicobacter pylori pfr gene to iron deficiency anemia? Helicobacter6(1),55–59 (2001).
    • 46  Jeon BH, Oh YJ, Lee NG, Choe YH. Polymorphism of the Helicobacter pylori feoB gene in Korea: a possible relation with iron-deficiency anemia? Helicobacter9(4),330–334 (2004).
    • 47  Park SA, Lee HW, Hong MH et al. Comparative proteomic analysis of Helicobacter pylori strains associated with iron deficiency anemia. Proteomics6(4),1319–1328 (2006).
    • 48  Merrell DS, Thompson LJ, Kim CC et al. Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect. Immun.71(11),6510–6525 (2003).
    • 49  Merrell DS, Goodrich ML, Otto G, Tompkins LS, Falkow S. pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect. Immun.71(6),3529–3539 (2003).
    • 50  Bury-Moné S, Thiberge JM, Contreras M, Maitournam A, Labigne A, De Reuse H. Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol. Microbiol.53(2),623–638 (2004).
    • 51  Touati D. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys.373(1),1–6 (2000).
    • 52  Danielli A, Romagnoli S, Roncarati D, Costantino L, Delany I, Scarlato V. Growth phase and metal-dependent transcriptional regulation of the fecA genes in Helicobacter pylori. J. Bacteriol.191(11),3717–3725 (2009).
    • 53  Delany I, Pacheco AB, Spohn G, Rappuoli R, Scarlato V. Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein. J. Bacteriol.183(16),4932–4937 (2001).
    • 54  Ernst FD, Bereswill S, Waidner B et al. Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiology151(Pt 2),533–546 (2005).▪▪ Provides an extensive list of genes from H. pylori that are under the control of iron, either in a Fur-dependent or -independent manner.
    • 55  Worst DJ, Gerrits MM, Vandenbroucke-Grauls CM, Kusters JG. Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition. J. Bacteriol.180(6),1473–1479 (1998).
    • 56  Crossley RA, Gaskin DJ, Holmes K et al. Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni. Appl. Environ. Microbiol.73(24),7819–7825 (2007).
    • 57  Cowart RE. Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Arch. Biochem. Biophys.400(2),273–281 (2002).
    • 58  Schroder I, Johnson E, De Vries S. Microbial ferric iron reductases. FEMS Microbiol. Rev.27(2–3),427–447 (2003).
    • 59  Fassbinder F, van Vliet AH, Gimmel V, Kusters JG, Kist M, Bereswill S. Identification of iron-regulated genes of Helicobacter pylori by a modified fur titration assay (FURTA-Hp). FEMS Microbiol. Lett.184(2),225–229 (2000).
    • 60  Pich OQ, Carpenter BM, Gilbreath JJ, Merrell DS. Detailed analysis of Helicobacter pylori Fur-regulated promoters reveals a Fur box core sequence and novel Fur-regulated genes. Mol. Microbiol.84(5),921–941 (2012).▪ Identifies novel genes under the control of Fur in H. pylori.
    • 61  Shibayama K, Wachino J, Arakawa Y, Saidijam M, Rutherford NG, Henderson PJ. Metabolism of glutamine and glutathione via gamma-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism. Mol. Microbiol.64(2),396–406 (2007).
    • 62  Zarnowski R, Cooper KG, Brunold LS, Calaycay J, Woods JP. Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant. Mol. Microbiol.70(2),352–368 (2008).
    • 63  Timmerman MM, Woods JP. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Infect. Immun.69(12),7671–7678 (2001).
    • 64  Bereswill S, Greiner S, van Vliet AH et al. Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori. J. Bacteriol.182(21),5948–5953 (2000).
    • 65  Bereswill S, Waidner U, Odenbreit S et al. Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. Microbiology144(Pt 9),2505–2516 (1998).
    • 66  Butcher J, Sarvan S, Brunzelle JS, Couture JF, Stintzi A. Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc. Natl Acad. Sci. USA109(25),10047–10052 (2012).
    • 67  Deng X, Sun F, Ji Q et al. Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus. J. Bacteriol.194(7),1753–1762 (2012).
    • 68  Alamuri P, Mehta N, Burk A, Maier RJ. Regulation of the Helicobacter pylori Fe–S cluster synthesis protein NifS by iron, oxidative stress conditions, and Fur. J. Bacteriol.188(14),5325–5330 (2006).
    • 69  Olson JW, Agar JN, Johnson MK, Maier RJ. Characterization of the NifU and NifS FeS cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry39(51),16213–16219 (2000).
    • 70  Gilbreath JJ, West AL, Pich OQ, Carpenter BM, Michel S, Merrell DS. Fur activates expression of the 2-oxoglutarate oxidoreductase genes (oorDABC) in Helicobacter pylori. J. Bacteriol.194(23),6490–6497 (2012).
    • 71  Smaldone GT, Revelles O, Gaballa A, Sauer U, Antelmann H, Helmann JD. A global investigation of the Bacillus subtilis iron-sparing response identifies major changes in metabolism. J. Bacteriol194(10),2594–2605 (2012).
    • 72  Gaballa A, Antelmann H, Aguilar C et al. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc. Natl Acad. Sci. USA105(33),11927–11932 (2008).
    • 73  Carpenter BM, Gancz H, Gonzalez-Nieves RP et al. A single nucleotide change affects Fur-dependent regulation of sodB in H. pylori. PLoS ONE4(4),e5369 (2009).
    • 74  Tsugawa H, Suzuki H, Satoh K et al. Two amino acids mutation of ferric uptake regulator determines Helicobacter pylori resistance to metronidazole. Antioxid. Redox Signal.14(1),15–23 (2011).
    • 75  Perez-Reyes E, Kalyanaraman B, Mason RP. The reductive metabolism of metronidazole and ronidazole by aerobic liver microsomes. Mol. Pharmacol.17(2),239–244 (1980).
    • 76  Tan S, Noto JM, Romero-Gallo J, Peek RM Jr, Amieva MR. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog.7(5),e1002050 (2011).▪ Describes the unanticipated role of the cytotoxins CagA and VacA in iron acquisition.
    • 77  Tan S, Tompkins LS, Amieva MR. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathog.5(5),e1000407 (2009).
    • 78  Baldwin DN, Shepherd B, Kraemer P et al. Identification of Helicobacter pylori genes that contribute to stomach colonization. Infect. Immun.75(2),1005–1016 (2007).
    • 79  Franco AT, Israel DA, Washington MK et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc. Natl Acad. Sci. USA102(30),10646–10651 (2005).
    • 80  Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils. Gastroenterology115(3),642–648 (1998).
    • 81  Hackelsberger A, Gunther T, Schultze V, Labenz J, Roessner A, Malfertheiner P. Prevalence and pattern of Helicobacter pylori gastritis in the gastric cardia. Am. J. Gastroenterol.92(12),2220–2224 (1997).
    • 82  Stolte M, Eidt S, Ohnsmann A. Differences in Helicobacter pylori associated gastritis in the antrum and body of the stomach. Z. Gastroenterol.28(5),229–233 (1990).
    • 83  Terry K, Williams SM, Connolly L, Ottemann KM. Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect. Immun.73(2),803–811 (2005).
    • 84  Rieder G, Merchant JL, Haas R. Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology128(5),1229–1242 (2005).
    • 85  Peek RM Jr, Miller GG, Tham KT et al. Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains. Lab. Invest.73(6),760–770 (1995).
    • 86  Kuipers EJ, Perez-Perez GI, Meuwissen SG, Blaser MJ. Helicobacter pylori and atrophic gastritis: importance of the cagA status. J. Natl Cancer Inst.87(23),1777–1780 (1995).
    • 87  Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut40(3),297–301 (1997).▪ Identifies CagA as a major determinant of cancer development.
    • 88  Yamaoka Y, Kita M, Kodama T, Sawai N, Kashima K, Imanishi J. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains. Gut41(4),442–451 (1997).▪▪ Identifies CagA as one of the factors contributing to the inflamatory response elicited during H. pylori infection.
    • 89  Suzuki M, Mimuro H, Kiga K et al.Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe5(1),23–34 (2009).
    • 90  Telford JL, Ghiara P, Dell’orco M et al. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med.179(5),1653–1658 (1994).
    • 91  Salama NR, Otto G, Tompkins L, Falkow S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun.69(2),730–736 (2001).
    • 92  Busiello I, Acquaviva R, Di Popolo A et al.Helicobacter pylori gamma-glutamyltranspeptidase upregulates COX-2 and EGF-related peptide expression in human gastric cells. Cell Microbiol.6(3),255–267 (2004).
    • 93  Gong M, Ling SS, Lui SY, Yeoh KG, Ho B. Helicobacter pylori gamma-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastroenterology139(2),564–573 (2010).
    • 94  Zhang Q, Dawodu JB, Etolhi G, Husain A, Gemmell CG, Russell RI. Relationship between the mucosal production of reactive oxygen radicals and density of Helicobacter pylori in patients with duodenal ulcer. Eur. J. Gastroenterol. Hepatol.9(3),261–265 (1997).
    • 95  Correa P, Piazuelo MB, Camargo MC. The future of gastric cancer prevention. Gastric Cancer7(1),9–16 (2004).
    • 96  Sato K, Watanabe S, Yoshizawa T, Hirose M, Murai T, Sato N. Ammonia, hydrogen peroxide, and monochloramine retard gastric epithelial restoration in rabbit cultured cell model. Dig. Dis. Sci.44(12),2429–2434 (1999).
    • 97  Kodama M, Tsukada H, Ooya M et al. Gastric mucosal damage caused by monochloramine in the rat and protective effect of taurine: endoscopic observation through gastric fistula. Endoscopy32(4),294–299 (2000).
    • 98  Krishnan N, Doster AR, Duhamel GE, Becker DF. Characterization of a Helicobacter hepaticus putA mutant strain in host colonization and oxidative stress. Infect. Immun.76(7),3037–3044 (2008).
    • 99  Krishnan N, Becker DF. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress. J. Bacteriol.188(4),1227–1235 (2006).
    • 100  Nagata K, Nagata Y, Sato T, Fujino MA, Nakajima K, Tamura T. L-Serine, D- and L-proline and alanine as respiratory substrates of Helicobacter pylori: correlation between in vitro and in vivo amino acid levels. Microbiology149(Pt 8),2023–2030 (2003).
    • 101  Nakajima K, Inatsu S, Mizote T et al. Possible involvement of put A gene in Helicobacter pylori colonization in the stomach and motility. Biomed. Res.29(1),9–18 (2008).
    • 102  Delany I, Spohn G, Pacheco AB et al. Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site. Mol. Microbiol.46(4),1107–1122 (2002).
    • 103  Delany I, Spohn G, Rappuoli R, Scarlato V. An antirepression Fur operator upstream of the promoter is required for iron-mediated transcriptional autoregulation in Helicobacter pylori. Mol. Microbiol.50(4),1329–1338 (2003).
    • 104  Delany I, Ieva R, Soragni A, Hilleringmann M, Rappuoli R, Scarlato V. In vitro analysis of protein–operator interactions of the NikR and Fur metal-responsive regulators of coregulated genes in Helicobacter pylori. J. Bacteriol.187(22),7703–7715 (2005).
    • 105  Tsugawa H, Suzuki H, Matsuzaki J, Hirata K, Hibi T. FecA1, a bacterial iron transporter, determines the survival of Helicobacter pylori in the stomach. Free Radic. Biol. Med.52(6),1003–1010 (2012).
    • 106  Waidner B, Greiner S, Odenbreit S et al. Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect. Immun.70(7),3923–3929 (2002).
    • 107  Grubman A, Phillips A, Thibonnier M et al. Vitamin B6 is required for full motility and virulence in Helicobacter pylori. MBio1(3),pii:e00112-10 (2010).
    • 108  Chevalier C, Thiberge JM, Ferrero RL, Labigne A. Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol. Microbiol.31(5),1359–1372 (1999).
    • 109  Mcgovern KJ, Blanchard TG, Gutierrez JA, Czinn SJ, Krakowka S, Youngman P. Gamma-glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization. Infect. Immun.69(6),4168–4173 (2001).
    • 110  Eaton KA, Suerbaum S, Josenhans C, Krakowka S. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun.64(7),2445–2448 (1996).
    • 111  Seyler RW Jr, Olson JW, Maier RJ. Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect. Immun.69(6),4034–4040 (2001).
    • 112  Olson JW, Maier RJ. Molecular hydrogen as an energy source for Helicobacter pylori. Science298(5599),1788–1790 (2002).